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Abstract. The goal of this pilot study is to analyze intracranial pressure (ICP) data from a group
of 42 patients and to build a Hierarchical temporal memory (HTM) model that will try to predict
future ICP values. As a references, Support Vector Regression (SVR) with RBF kernel was used.
To better compare the practical performance of the models, a binary alarm with threshold set
to a value when a medical intervention is needed was used. The results show better recall and
MSE for HTM while better false omission rate for SVR.
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1. Introduction
Patients with severe traumatic brain injury (TBI) have a significant risk of hypotension, hypox-
aemia, and brain swelling. Neurological damage invoked by these dangerous conditions may
not occur immediately at the moment of primary injury at an accident scene, but evolves over
time as a secondary injury. The secondary brain injury is the leading cause of in-hospital deaths
after brain trauma and it is directly associated with the increase of intracranial pressure (ICP)
and subsequent decrease in cerebral perfusion that brings about brain tissue ischaemia. As de-
scribed in [1], organized emergency services can improve outcome for patients with severe TBI,
provided the patients are immediately transported to an Intensive Care Unit (ICU) which has
possibilities to monitor the ICP values permanently.

ICP is measured in millimeters of mercury (mm Hg) and, at rest, normally varies between
7–15 mm Hg for adults [2]. 30–40 mm Hg is the upper limit of ICP normality, and the values
above this limit serve as an alarm for the initiation of special treatment [1]. Although, several
neurological indicators are useful for the decision to trigger additional life-saving interventions
in TBI cases, periodical (or continuous) measuring the ICP values represents the crucial indica-
tor. Several papers were published ([3, 4]) in which attempts to analyze/evaluate inner structure
of the ICP waveforms as functions of time have been described.

In our paper we treat the discretized (with the one-hour time step) ICP records as time se-
ries and investigate whether predicted ICP values can provide additional information important
for making medical decisions on special TBI treatment initiation. Assuming similar causes of
changes in ICP for various patients we propose to use a predictive model capable of learning
from multiple independent time series. In order to allow for using the model for online analy-
sis of the live ICP measurements at ICU we furthermore propose to use a model that provides
online learning and inference. Currently, to our knowledge such criteria meet only Hierarchi-
cal Temporal Memory (HTM) with its up-to-date learning algorithms called Cortical Learning
Algorithms (CLA) [5]. As a reference we used Support Vector Regression (SVR) model in a
simulated online mode.
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2. Subjects and Methods
Dataset
For our pilot study a set of clinical records of ICP for 42 TBI patients in the period of maximally
10 days were available. Within these data 30 records belonged to those patients who had sur-
vived and had been discharged from ICU in a stabilized state. 12 patients have deceased. Due to
the various clinical limitations, the ICP recording was performed as non-overlapping one-hour
intervals characterized by maximum values within those intervals. These maxima represented a
discretized version of an ICP record (sequence). The starting time of the ICP records varied for
individual patients, and for the survived patients the maximal duration of the ICP measurement
was set to 10 days (240 time instants). The clinical protocol also lead to occasional discontinuity
in the ICP recording caused by necessity to disconnect a patient for the time of examination at
another clinical department. The remedy for all of such missing values has been made by linear
interpolation of data. For each patient, there is a label of his/her state (lethal or vital) assessed
at the time he/she left the ICU, however, this information was not used during learning.

Hierarchical Temporal Memory
Hierarchical temporal memory (HTM) is a large-scale computational model of the algorithmic
and structural properties of the neocortex developed by Hawkins, George, and their colleagues
at Numenta Inc. [6]. The reference implementation is distributed in the NuPIC1 package.

Recently, the initial HTM learning algorithms (Zeta1), have been replaced by a new gen-
eration, called Cortical Learning Algorithms (CLAs) [5]. The main change is that CLAs work
with data encoded in binary representations where only small percentage of the bits are “on” at
one time and each bit only partly captures the original data. This is called a sparse distributed
representations (SDRs). SDRs enables HTM to become an online learning system that models
complex time-varying data and makes continuous predictions about future inputs. The proper
function of HTM required that input data are first encoded into SDRs in such a way that simi-
lar inputs map into similar representations, i.e., a small change in the SDR should not greatly
change the semantics of the data after decoding. In terms of structure, HTM is a hierarchical
memory model comprised of neurons, called cells, organized into a grid of columns which form
an HTM region. Multiple regions may be connected to form a more complex hierarchy. Each
column in a region is connected to a unique subset of the input bits. Due to local inhibition
among columns, the activations of the columns in a region form a SDR as well. A very impor-
tant feature is that activation of a column is context-dependent, thus HTM can learn to represent
the same pattern in different temporal contexts. In a column, one or multi-step prediction is
implemented by creating lateral connections between an active cell with a subset of previously
active nearby cells. The formation speed of these connections can by adjusted by a learning rate
parameter.

3. Prediction of ICP
The basic idea of how to utilize these data for making reliable clinical decisions in every mo-
ment of the development of patients’ health conditions is to explore a possibility of ICP values
prediction, which can be used, together with apriori setting of a critical ICP threshold, for alarm
triggering. We argue that a prediction of future ICP values could help to indicate future states
of a patient, and thereby to make the earlier decision on initiation of the special treatment pro-
tocol. Thus we propose a binary alarm indicator implemented as a threshold set to 35 mm Hg.
The alarm indicator from the predicted ICP sequences should match the alarm indicator from
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original ICP sequences. There are 18 original ICP records (no. 2, 6, 7, 9, 11, 14, 15, 19, 20, 26,
27, 28, 33, 34, 35, 37, 38, and 39) for which all the ICP values are below the given threshold.

We have accomplished the "leave-one-out" cross-validation scheme, namely, for 42 se-
quences, one sequence was always selected as a test sample, while all 41 remaining sequences
entered the learning procedure of the HTM network. These contain patterns common for both
classes which can be helpful for the ICP values prediction. For the current ICP dataset we used
one-step prediction. For a dataset or live measurements with shorter time scale (e.g., in order
of minutes), a multi-step prediction might be necessary to better account of future trend. After
the training phase, ICP data of the testing patient were put into the HTM network one by one,
while a one-step prediction value was read out. With this procedure, HTM can calculate infor-
mative prediction immediately after seeing the first ICP value measured, and simultaneously it
continues learning from incoming actual data.

As a prediction method for reference we selected the well-known SVR model with RBF
kernel applied to the same one-step prediction task. SVR was trained to predict next value from
k previous values, i.e., ICP at time t + 1 was predicted based on values at times t − k+ 1, ..., t.
For each test sequence, a training dataset from all other sequences was generated at first. Then,
as the prediction for the test sequence progressed starting from the (k+1)-th value, this dataset
was augmented with new training data from the test sequence and SVR was retrained, i.e.,
simulating online learning.

4. Results
We used a public NuPIC implementation of HTM in the version 0.2.1. The HTM network
consisted of one region with 2048 columns and 32 cells per column. The learning rate parameter
was set to 0.036. These and other learning and inference hyperparameters (described in [5])
were optimized using a cross-validation procedure with Mean Absolute Percent Error metric,
which is a part of NuPIC. SVR used RBF kernel with parameter C set to 1000 and parameter γ

set to 0.003. The window size k was set to 8. These parameters were found using a leave-one-
out cross-validation scheme.

For the evaluation of the model predictions for each patient we used the mean square error
(MSE) metric. Predicted binary alarms were evaluated using the recall and false omission rate
(FOR) characteristics. Recall is defined as the proportion of number of true positives to the
number of all ground-truth positives (all original alarms). FOR is defined as the proportion of
the number of false negatives w.r.t. number of all predicted negatives. The rationale is that false
negatives should be treated with more care due to higher associated health risk compared to
false positives. Results for each patient and prediction method are shown in Fig. 1. In overall,
averaged over all patients, the SVR model yields lower FOR (0.038 vs 0.031), however, the
HTM model yields lower MSE (53.474 vs 62.522) and higher recall (0.265 vs 0.211).

5. Conclusions
The goal of this pilot study was to explore the usefulness of prediction of ICP for making earlier
decisions on triggering a special treatment protocol. We considered the set of acquired ICP se-
quences as retrospective time series for which a task of prediction can be of value. We proposed
to apply an HTM intelligent network, that can learn from all ICP sequences and generate one-
step prediction. The prediction results achieved have been compared to the prediction results
generated by a reference method of Support Vector Regression model with RBF kernel on the
basis of recall, FOR, and MSE statistics. We can conclude that the HTM network manifested
encouraging results that deserve to be extended further in the ongoing research. Future research
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Fig. 1: Recall, false omission rate (FOR), and mean square error (MSE) for all patients for HTM (top)
and SVR (bottom) predictors. Note that MSE has different scale, located on the right.

could also include combining these or similar models that have complementary performance.
Due to a lack of detailed information on medical conditions of patients with TBI at the

time ICP starts, the analysis we proposed could not be complete. For more comprehensive
exploration of retrospective data mining form ICP records complementary medical information
will be needed.
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