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Abstract. The measurement signals of the quadrature homodyne interferometers (say x and
y, usually called Sine/Cosine signals and/or quadrature signals) typically exhibit offsets, un-
equal amplitudes and a phase difference that is not exactly90 degree as would be expected in
the ideal/theoretical case. Moreover, frequently there isa significant component of the mea-
surement noise which is common to both signals (caused, e.g.,by the amplitude noise of the
laser), and as such, it results in a non vanishing correlation of the measured signals. Here we
present a method for estimation of the unknown correlation coefficient from the observed data
and suggest its implementation into the algorithm for demodulation and evaluation of the am-
plitude noise related uncertainty contribution of correlated quadrature interferometer signals,
originally proposed by Köning, Wimmer and Witkovský in [2] for uncorrelated interferometer
signals.
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1. Introduction
In order to demodulate the observed homodyne interference signals an ellipse is fitted to both
signals,x andy, simultaneously. This procedure was originally proposed by Heydeman [1] and
is therefore known as Heydeman Correction (HC). The estimatedellipse parameters are used
for demodulation of the quadrature interferometer signalsand also for derivation of the associ-
ated uncertainties of the interferometric phase values and/or displacements (the parameters of
primary interest in dimensional metrology), for more details see e.g. [1, 7]. In [2], we have
suggested an iterative algorithm based on linearization ofthe originally nonlinear model (in
fact the linear regression model withnonlinearconstraints on its parameters). The nonlinear
model is approximated locally by a linear regression model with linear constraints of type II,
as suggested by Kubáček in [5], pp. 146 and 152. This allows to derive thelocally best linear
unbiased estimators (BLUEs) of the model (ellipse) parameters, as well as derivation of the
(approximate) covariance matrix of the estimators. Using this solution the required interfero-
metric phase values follow from (2), and their uncertainties can be obtained in a straightforward
way by the law of propagation of uncertainty. The process of linearization/estimation can be
iterated, until an adequately chosen convergence criterion is reached.

Originally, this method was suggested and derived for uncorrelated interferometer signals.
However, as it was already mentioned, a component of the measurement noise common to
both signals leads to (sometimes strongly) correlated measurement signals. So, in [3] we have
modified the algorithm and presented a MATLAB implementation (ellipseFit4HC) which
allows fitting also correlated interferometer signals, assuming that the correlation parameter is
known in advance.
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In situations when the number of measurements is sufficiently large, a simple analytic ex-
pression for the statistical uncertainty of the phase was derived in [4]. This allows to iden-
tify a practical limit of optical quadrature displacement interferometry, which already has been
reached experimentally.

Mathematically, the (noiseless) output signals can be described as

x(ϕ) = α0+α1cosϕ
y(ϕ) = β0+β1sin(ϕ +ϕ0), (1)

whereϕ is the phase (the parameter of a primary interest),α0 andβ0 denote the coordinates
of the ellipse center (the offsets),α1 andβ1 are the signal amplitudes, and−π/2< ϕ0 < π/2
is the phase offset. Under these circumstances, given the true values of the ellipse parameters,
α0,β0,α1,β1,ϕ0, and the particular signal valuesx andy (lying on this specific ellipse), the
required interferometric phaseϕ is determined by using the relation

ϕ = arctan

[

α1(y−β0)−β1(x−α0)sinϕ0

β1(x−α0)cosϕ0

]

. (2)

However, real applications have to use noisy experimental data(xi ,yi), i = 1, . . . ,n. So it
is a problem of fitting an ellipse to data by minimizingSS(ϑ) = ∑n

i=1 [xi − (α0+α1cosϕi)]
2+

[yi − (β0+β1sin(ϕi +ϕ0))]
2. The procedure requires a minimization in the(n+5)-dimensional

parameter space, with the parametersϑ = (α0,β0,α1,β1,ϕ0,ϕ1, . . . ,ϕn). This is predictably
cumbersome for relatively largen (a typical case for the interferometric measurements), so we
shall rely on our approximation method. Here we focus mainlyon the problem how to estimate
the unknown correlation coefficient from the observed data.

2. Subject and Methods
We consider the following measurement model for the correlated quadrature output signals
(xi ,yi), i = 1, . . . ,n,

xi = µi + εx,i,
yi = νi + εy,i, (3)

with the following set of nonlinear restrictions on the model parameters,

µ2
i +Bν2

i +Cµiνi +Dµi +Fνi +G= 0, i = 1, . . . ,n, (4)

whereB,C,D,F,G represent the algebraic ellipse parameters. Notice that the ellipse parameters
B,C,D,F,G only appear in the restrictions. They are uniquely related to the geometric ellipse
parametersα0,β0,α1,β1,ϕ0, for more details see [2]. In a matrix notation we get

(

x

y

)

=

(

µ
ν

)

+

(

εx

εy

)

,

(

εx

εy

)

∼N

((





)

,σ2
(

I ρI
ρI I

))

(5)

withx=(x1, . . . ,xn)
′,y=(y1, . . . ,yn)

′, µ =(µ1, . . . ,µn)
′, ν =(ν1, . . . ,νn)

′, εx=(εx,1, . . . ,εx,n)
′,

εy = (εy,1, . . . ,εy,n)
′, such thatεx ∼ N(,σ2I) andεy ∼ N(,σ2I) (possibly correlated, with

corr(εx,i ,εy,i) = ρ, i = 1, . . . ,n), and with nonlinear restriction on the model parameters ofthe

formBθ +b=, whereB= [ν2 ...µν
...µ

...ν
...], θ =(B,C,D,F,G)′, b= µ2, µ2=(µ2

1, . . . ,µ
2
n)

′,

ν2 = (ν2
1 , . . . ,ν

2
n)

′, µν = (µ1ν1, . . . ,µnνn)
′, and= (1, . . . ,1)′, = (0, . . . ,0)′. Here,[u

...v] de-
notes the concatenation of the vectorsu andv to a matrix.
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We shall linearize the nonlinear system of restrictions,Bθ +b= , by the first-order Taylor
expansion aboutµ0, ν0, andθ 0,

Bθ +b ≈ A0

(

µ∆
ν∆

)

+B0θ ∆ +c0, (6)

where

A0 =

[

Diag

([


...ν0

...
...

...

]

θ 0+2µ0

)

... Diag

([

2ν0
...µ0

...
...

...

]

θ 0

)]

,

µ∆ = µ −µ0, ν∆ = ν −ν0,

B0 =

[

ν2
0
...µ0ν0

...µ0
...ν0

...

]

,

θ ∆ = θ −θ 0, b0 = µ2
0, c0 =B0θ 0+b0 and θ 0 = (B0,C0,D0,F0,G0)

′. (7)

Thus, we get the (approximate) linear regression model withlinear constraints,
(

x∆
y∆

)

approx
∼ N

((

µ∆
ν∆

)

,H

)

∧ A0

(

µ∆
ν∆

)

+B0θ ∆ +c0 = , (8)

wherex∆ = x− µ0, y∆ = y− ν0, A0, B0, andc0 are given by (7), andH is the correlation
matrix of the measurement errors(ε ′x,ε ′y)′, here

H = σ2I2n,2n+δ
(

n,n In,n

In,n n,n

)

= σ2V1+δV2 (9)

with δ = σ2ρ. This model serves as a first-order approximation to the nonlinear model (3)–(4).
Hence, the (locally) best linear unbiased estimators (BLUEs) of the model parameters and their
covariance matrix can be estimated by a method suggested in [5], for more details see also [2]:





(

µ̂∆
ν̂∆

)

θ̂ ∆



=−

(

HA′
0Q11,0

Q21,0

)

c0+

(

I−HA′
0Q11,0A0

−Q21,0A0

)(

x∆
y∆

)

, (10)

whereQ11,0 andQ21,0 are blocks of the matrixQ0 defined by

Q0 =

(

Q11,0 Q12,0

Q21,0 Q22,0

)

=

(

A0HA′
0 B0

B′
0 0

)−1

, (11)

together with its covariance matrix

Cov





(

µ̂∆
ν̂∆

)

θ̂ ∆



=

(

H−HA′
0Q11,0A0H −HA′

0Q12,0

−Q21,0A0H −Q22,0

)

. (12)

Then, the estimators of the original parametersµ , ν , andθ are given byµ̂ = µ̂∆ + µ0, ν̂ =
ν̂∆ +ν0, θ̂ = θ̂ ∆ +θ0.

Let σ2
0 , δ0 be selected appropriate initial values ofσ2 andδ . Now, we shall derive the esti-

mator(σ2
0 ,δ0)-MINQUE, i.e. the(σ2

0 ,δ0)-locally minimum norm quadratic unbiased estimator
of σ2, δ , which is optimum in the class of quadratic estimators of variance components. For
more details see [6], Chapter 5.2, pp. 93-99.
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For his purpose, first we shall create the 2×2 matrixS, where

{S}i, j = Trace
[

A′
0Q11,0A0ViA

′
0Q11,0A0V j

]

, i, j ∈ {1,2}, (13)

andQ11,0 is a block of matrixQ0 defined by (11) with usingH ≡H0 = σ2
0V1+ δ0V2. Then,

the(σ2
0 ,δ0)-MINQUE of the variance componentsσ2 andδ is given by

(

σ̂2

δ̂

)

= S−1









((

x∆
y∆

)

− γ̂
)′

H−1
0 V1H

−1
0

((

x∆
y∆

)

− γ̂
)

((

x∆
y∆

)

− γ̂
)′

H−1
0 V2H

−1
0

((

x∆
y∆

)

− γ̂
)









, (14)

where

γ̂ =
(

I2n,2n−H0A
′
0Q11,0A0

)

(

x∆
y∆

)

−H0A
′
0Q11,0c0. (15)

The process can be iterated until convergence is reached. Weshould start with appropriate
valuesµ(0)

0 , ν(0)
0 , θ (0)

0 , σ2
0 , δ(0). Such we obtain the (locally) BLUEs of the parametersµ, ν , θ

and the (iterated) MINQUEs with their estimated covariancematrices.

3. Discussion
In this paper we have derived (and suggested to use) the explicit form of the (iterated) MINQUE
estimator for estimation of the unknown correlation coefficient of the interferometer signalsx
andy. This helps to improve the previously suggested algorithm for demodulation and uncer-
tainty evaluation of correlated quadrature interferometer signals.
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