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Abstract: Manual identification of brain tumors is error-prone and time-consuming for radiologists. Therefore, automation of the process is 

crucial. Although binary classification, such as distinguishing between malignant and benign tumors, is often straightforward, radiologists 

face significant challenges when classifying multimodal brain tumors. In this study, we present an automated approach that uses deep 

learning to classify brain tumor types using many types of data. The proposed method consists of three sequential phases. First, the median 

filter is used to eliminate any noise. For feature extraction in the second stage, linear contrast enhancement is used on VGG-16. The 

meningioma, glioma, and pituitary images are identified in the third stage of the brain tumor classification (BTC) process, which uses a 

modified capsule convolution neural network (CNN) design. The experimental results show that the brain tumor detection technique 

presented in this study successfully identifies the locations of tumor lesions. The results obtained were notably superior, with an accuracy of 

98.34 %, a precision of 97.84 %, a recall of 05.34 %, and an F1-score of 94.56 %.  

Keywords: Brain tumor, multimodal, MRI images, CT images, optimization, convolution neural network, segmentation. 

 

1. INTRODUCTION 

A brain tumor is one of the most alarming diseases 

worldwide [1]. In the United States, there are 24530 

malignant tumors and 59040 non-malignant tumors in the 

central nervous system (CNS). In addition, 18600 people will 

die from this condition [2]. Brain tumor detection and 

diagnostic procedures often rely on the expertise of 

neuroexperts and radiologists who evaluate the images. This 

process is complex, time-consuming, and prone to human 

error [3]. Therefore, there is now a great need for computer-

aided diagnostics. Moreover, in a low-income country like 

Bangladesh, the cost of advanced medical treatments is likely 

to be prohibitive for the majority of the population. Several 

companies are using similar strategies to improve medical 

diagnostics and predict diseases at an early stage [4]. Human 

detection and tracking of brain tumors is tedious and error-

prone. Therefore, automated technologies are needed to 

replace traditional human procedures. Over the past decade, 

deep neural networks (DNNs) have consistently shown 

excellent performance as evidenced by recent multimodal 

challenges [5]. Convolution neural networks (CNNs) are 

a recognized deep learning method that provides excellent 

results on both two-dimensional (2D) and three-dimensional 

(3D) medical images. Transfer learning is often used when 

there is a lack of data and computational resources to save 

time [6]. In this approach, the information obtained from one 

task is used to solve similar tasks. There is a lack of advanced 

frameworks that seamlessly fuse multimodal data using 

neural networks to enable more accurate and robust brain 

tumor classification. Techniques for deep feature fusion, such 

as combining spatial and temporal features across modalities, 

are still under-researched. 

2. RELATED WORKS 

In this section, existing studies were categorized as deep 

learning and neural networks using pre-trained methods. In 

[7], multi feature scaling neural network (MultiFeNet) used a 

CNN to classify brain tumors. Multi-level feature scaling was 

used for feature extraction. An optimized CNN was 

developed in [8]. Experimental results on the BRATS 2018 

dataset show improved performance (precision of 97.41 %, 

recall of 95.78 %, and dice score of 97.04 %) compared to 
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previous frameworks. In [9], the Harris Hawks optimized 

convolution network (HHOCNN) was presented. Various 

features are extracted from the segmented domain and 

identified using a CNN. In [10], an effective method for brain 

tumor classification (BTC) using a hierarchical deep-learning 

neural network (HieDNN) classifier is presented. In [11], 

a new parallel DCNN architecture is proposed to extract both 

global and local features from the two parallel stages and 

overcome the problem of overfitting by using dropout 

regularization in conjunction with batch normalization. The 

CNN is used to detect brain tumors in X-ray images. The 

accuracy of MobileNetV2, InceptionV3, and VGG19 was 

92 %, 91 %, and 88 %, respectively. 

The main problem with using neural networks to 

categorize MRI and CT scans is the amount of imagesin the 

database. Also, MRI and CT scans are acquired in multiple 

planes, sousing all accessible planes could expand the 

collection and solve the problem of overfitting. 

3. PROPOSED CLASSIFIER MODEL 

First, the multimodal images such as MRI and CT are 

loaded and preprocessed with a median filter. Then feature 

extraction is performed with VGG-16, followed by 

dimension reduction. Finally, the tumor regions and their 

types are classified using the transformation matrix capsule 

convolution neural networks (TMCapsNet) as shown in 

Fig. 1: 

 

Fig. 1.  BTC model. 

A. Preprocessing of multimodal data 

Preprocessing brain MRI and CT images with a median 

filter can help reduce noise while preserving important 

features in both modalities. During preprocessing useful 

information is extracted, and grouped as radiometric or 

geometric corrections. Median filtering replaces the center 

pixel of a sliding window that moves pixel by pixel across the 

entire image with the median value of the gray levels. 

Consider an (𝐴 ∗ 𝐵), where 𝐴 indicates represents an MRI 

image and 𝐵 indicates represents a CT image, with the image 

𝐼(𝑝, 𝑞)𝜖{1,2, … 𝐴} ∗ {1,2 … . 𝐵, }. If 𝑝, 𝑞 commonly generally 

indicate the intensity or value of a pixel at coordinates (𝑝, 𝑞) 

in an image, a 2-dimensional median filter is given as: 

 𝐼(𝑝, 𝑞) = 𝑚𝑒𝑑𝑖𝑎𝑛 {𝐼(𝑝 + 𝑢, 𝑞 + 𝑣)} (1) 

where 𝑢, 𝑣 ∈ (− (
𝑥−1

2
) , … . (

𝑥−𝑛

2
)) and 𝑥(𝑖, 𝑗) represents the 

pixel at (𝑖, 𝑗). This preprocessing approach with median 

filters produces smoothed images while preserving the edges, 

which is an important feature. 

B. VGG-16 based feature extraction 

Consider the preprocessed images ∆ = {𝜏1, 𝜏2, … 𝜏𝑁},  

 𝜏𝑁 ∈ 𝑅𝑑 . Suppose 𝜇(𝐴, 𝐵) is a fused CT and MRI image of 

size 𝑁 × 𝑀, where 𝑁 = 256 and 𝑀 = 256 are rows and 

columns, respectively. 𝜏𝑖  is the average of clusters 𝐾𝑖, and the 

criterion function is: 

 𝑆′ = ∑ ∑ |𝜏 − 𝜏𝑖|
2

𝜏∈𝑘𝑖

𝐾
𝑖=1  (2) 

where  𝑆′ is the total sum of squared errors of all pixels. The 

symbol 𝜏 represents the input images, and  𝜏𝑖 denotes the 

number of clusters that are initialized. We used the generated 

images described by 𝜏1(𝑥, 𝑦) to implement the edge-based 

texture histogram (HC) equalization, where 𝜏1(𝑥, 𝑦) ∈ 𝑆′. 

The gradient of the generated image  𝜏1(𝑥, 𝑦)  was calculated 

in the following way: 

 𝐺(𝑥, 𝑦) = √𝐺𝑥(𝑥, 𝑦)2 + 𝐺𝑦(𝑥, 𝑦)2 (3) 

where  𝐺𝑥 and 𝐺𝑦  represent the 𝑥 and 𝑦 derivatives of 

𝜏1(𝑥, 𝑦), respectively. The edge map was then created by 

applying a threshold function in the following way:  

 𝐸𝑀𝑝(𝑥, 𝑦) = {
1     𝐺(𝑥, 𝑦) < 𝑇

0     𝐺(𝑥, 𝑦) ≥ 𝑇′
 (4) 

Based on this calculation, we selected the pixels with 

values above the threshold  𝑇 = 0.55. These pixels were used 

to create the HC. Then, 𝛼 and 𝛽 were calculated, with 𝛼 

representing the lowest pixel value and 𝛽 representing the 

highest pixel value. The gray levels were designated as HC if 

their values were between 𝛼 and 𝛽. Finally, to get a better 

image, the transfer functions and the cumulative distribution 

function (CDF) were used. The VGG-16 model consists of 12 

convolution layers, 15 ReLU activation layers, five max-

pooling layers, three fully connected (FC) layers, and one 

classification Softmax layer. The input layer has dimensions 

of 224 x 224 x 3. The first convolution layer consists of 64 

filters with dimensions of 3 x 3 x 3. A step size of 1 unit was 

used. In the subsequent convolution layer, the number of 

filters remained the same, but the dimensions of each filter 

were augmented to 3 x 3 x 64. Finally, the dense layer is used 

to extract features. The features can include intensity-based 

characteristics (such as voxel intensities and histogram 

statistics), texture characteristics (derived from gray-level co-

occurrence matrices and local binary patterns), shape 

characteristics (such as volume and surface area), or other 

sophisticated characteristics (such as fractal dimensions and 

wavelet transform coefficients). 
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C. Dimensionality reduction 

Following feature extraction, use differential evolution 

optimization to reduce the dimensionality of the features 

found. Differential evolution is a population-based 

optimization approach used to identify the best subset of 

characteristics that retains the highest degree of 

discriminative information. Vector discrepancies between 

two randomly selected individuals from the same population 

are calculated to perform the mutation. By combining the 

weighted difference of two vectors  𝐹(𝑋𝑟2,𝑔 + 𝑋𝑟3,𝑔) with the 

basic vector  𝑋𝑟1,𝑔, its organization is disrupted to produce the 

mutant individual 𝑉𝑖,𝑔. The following formula generates 

a mutant vector: 

 𝑉𝑖,𝑔 = 𝑋𝑟1,𝑔 + 𝐹(𝑋𝑟2,𝑔 + 𝑋𝑟3,𝑔) (5) 

where, 𝑟1, 𝑟2 and 𝑟3 are randomly selected from the range 

[1, 𝑁], where 𝑁 is the total number of people in the 

population. The variables 𝑔 and 𝐹 respectively are the current 

generation and a constant mutation factor, respectively, 

which can assume values between 0 and 2. The target vector 

𝑋𝑖,𝑔 and the mutant vector  𝑉𝑖,𝑔 are recombined to generate 

the trial vector  𝑈𝑖,𝑔. The crossover factor indicates how high 

the probability is that components of the mutant vector will 

be included in the trial vector. Trial vector construction 

formula is: 

 𝑈𝑖,𝑗,𝑔 = {
𝑉𝑖,𝑗,𝑔    𝑖𝑓 𝑟𝑎𝑛𝑑𝑖,𝑗 ≤ 𝐶𝑅   𝑜𝑟  𝐽 = 𝐽𝑟𝑎𝑛𝑑

𝑋𝑖,𝑗,𝑔    𝑖𝑓 𝑟𝑎𝑛𝑑𝑖,𝑗 > 𝐶𝑅   𝑜𝑟  𝐽 ≠ 𝐽𝑟𝑎𝑛𝑑
 (6) 

where 𝑖 = 1,2, … 𝑁, where N is the size of the population. 

Similarly, let 𝑗 = 1,2, … 𝐷, where D is the dimension of 

a single vector. 𝑟𝑎𝑛𝑑𝑖,𝑗   is a randomly generated number in 

the range of  [0,1].  𝐽𝑟𝑎𝑛𝑑 is a randomly generated integer from 

the set  [1,2, … 𝐷]. Based on the fitness function formula, the 

trial vector 𝑈𝑖,𝑔  is compared with the target vector 𝑋𝑖,𝑔 and 

the one with the lowest function value is selected to generate 

𝑔 + 1, 

 𝑋𝑖,𝑔+1  =  {
𝑈𝑖,𝑗,𝑔 

𝑋𝑖,𝑔 
 
   𝑖𝑓 𝑓(𝑈𝑖,𝑔) < 𝑓(𝑋𝑖,𝑔)

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒               
 (7) 

The performance of the selected feature subset can be 

evaluated by cross-validation or other suitable validation 

techniques based on the fitness function. 

D. Capsule convolution neural network classifier 

In this study, we implemented a neural network 

architecture called TMCapsNet, in which a matrix is created 

in each capsule.  

According to this matrix criterion, the outputs are 

distributed to all parent capsules in the subsequent layer, but 

their coupling coefficients are not uniform. Each capsule tries 

to predict the output of its parent capsules. If this prediction 

matches with the actual output of the parent capsule, the 

coupling coefficient between these two capsules is increased. 

The prediction for the parent capsule 𝑗 is obtained by 

considering 𝑢𝑖 as the output of capsule 𝑖, 

 𝑢𝑗,𝑖 = 𝑊𝑖𝑗𝑢𝑖 (8) 

where the prediction vector of the output of the 𝑗𝑡ℎ capsule 

on a higher layer, computed from the capsule 𝑊𝑖𝑗 in the layer 

below, is denoted as  𝑢𝑗,𝑖. The weighting matrix to be learned 

in the backward pass is represented as 𝑊𝑖𝑗. The coupling 

coefficients 𝐶𝑖𝑗 are determined using a softmax function 

based on the degree of conformation between the capsules in 

the underlying layer and the parent capsules: 

 𝐶𝑖𝑗 =
𝑒𝑥𝑝(𝑏𝑖𝑗)

∑ 𝑒𝑥𝑝(𝑏𝑖𝑘)𝑘
 (9) 

where 𝑏𝑖𝑗  is the logarithmic probability of whether capsule 𝑖 

should be connected to capsule 𝑗. At the beginning of the 

routing by agreement procedure, it is originally assigned the 

value of 0. The input vector for the parent capsule 𝑗 is 

therefore calculated as follows: 

 𝑠𝑗 = ∑ 𝑐𝑖𝑗𝑖 𝑢𝑗,𝑖 (10) 

Finally, the following non-linear squashing function is 

used to prevent the output vectors of the capsules from 

exceeding the value one and to generate the final output of 

each capsule depending on its initial vector value, which is 

given in the following equation: 

 𝑣𝑗 =
‖𝑠𝑗‖

2

1+‖𝑠𝑗‖
2

𝑠𝑗

‖𝑠𝑗‖
 (11) 

where the input vector of capsule 𝑗 is denoted as 𝑠𝑗, while the 

output is represented by 𝑣𝑗. In the routing process, the log 

probabilities need to be updated by considering the agreement 

between 𝑣𝑗 and  𝑢𝑗,𝑖. This can be done by using the fact that 

if the two vectors agree, their inner product will be larger. 

Therefore, the agreement  𝑎𝑖,𝑗, which is used to update the log 

probability and the coupling coefficients, is calculated as 

follows: 

 𝑎𝑖,𝑗 = 𝑣𝑗 . 𝑢𝑗,𝑖 (12) 

The last layer's loss function 𝑙𝑘  provides a high loss value 

for capsules with extended output instantiation parameters if 

the represented object does not exist. The loss function 𝑙𝑘 is 

calculated as follows: 

𝑙𝑘 = 𝑇𝑘max (0, 𝑚+ − ‖𝑣𝑘‖2 + 𝜏(1 − 𝑇𝑘) max(0, ‖𝑣𝑘‖ − 𝑚−)−2 

       (13) 

where 𝑇𝑘  is equal to 1 if class k is present and 0 otherwise. 

The hyperparameters  𝑚+, 𝑚−, and 𝜏 must be defined prior 

to the learning process. Meningioma, glioma, and pituitary 

tumors are categorized as a consequence. With a 16-mini-

batch size and data shuffling per iteration, an Adam optimizer 

trained the network. The early-stopping criterion, which 

determines when the network training process is terminated, 

is based on the completion of one epoch. Some of the 

limitations and possible directions are listed here: Capsule 

networks often require more computational resources due to 

their complex routing mechanisms and dynamic routing 

between capsules. This can lead to longer training times and 

higher energy consumption. CapsNets can be sensitive to the 
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initialization of the weights. Poor initialization can lead to 

slow convergence or complete failure to learn, making them 

less robust. 

4. EXPERIMENTAL ANALYSIS 

Experimental setup: For training the model, we used an 

NvidiaGeforce 2080 GPU with a storage capacity of 8 GB. 

The training set comprised 100 epochs and a batch size of 8. 

The processing system used in this study consists of a PC 

equipped with an Intel Core i3 CPU and 8 GB of RAM. The 

software used for the classification and improvement 

objectives is Python 3.9.7. Table 1 indicates modified capsule 

CNN configuration details [12]. 

Table 1.  Modified capsule CNN. 

Layer Size 

Kernel size 3×3 

Activation function ReLU 

Input layer 28×28×1 

Number of filters 32 to 256 

Filter size 3×3 

 

BRATS is an abbreviation for "The Multimodal Brain 

Tumor Image Segmentation Benchmark". Evaluating the 

effectiveness of different brain cancer image segmentation 

methods against the most advanced techniques is a 

challenging endeavor. The performance metric for disease 

classification is significantly influenced by the detection rate, 

which represents the proportion of contaminated pixels 

relative to the total number of pixels. Several researchers in 

the literature review have used several significant parameters, 

including accuracy, precision, recall and F1-score. Table 2 

lists the evaluation parameters.  

Table 2.  Performance metrics. 

Performance matrix  Formula 

Accuracy 𝑎𝑐 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

Precision 𝑝𝑟 =
𝑛𝑡

𝑛𝑡 + 𝑝𝑓
 

Recall 𝑟𝑒 =
𝑝𝑡

𝑝𝑡 + 𝑛𝑓
 

F1-score 𝑝𝑝𝑣 =
𝑝𝑡

𝑝𝑡 + 𝑝𝑓
 

Note: 𝑝𝑡 = 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒 𝑛𝑡 = 𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒 

 𝑝𝑓 = 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒 𝑛𝑓 = 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒 

 

Fig. 2 shows the evaluation of accuracy. The proposed 

TMCapsNet achieves the highest accuracy with 98.45 %, 

significantly outperforming MultiFeNet with 94.89 % and 

CNN with 90.46 %. This proves that TMCapsNet is the most 

reliable model in terms of overall correctness. 

Fig. 3 shows the evaluation of precision. In this case, 

MultiFeNet has the highest precision with 96.56 %, followed 

by TMCapsNet with 95.78 %, and CNN with 94.98 %. While 

MultiFeNet has a slight edge in precision, indicating it is 

slightly better at reducing false positives, the proposed 

TMCapsNet still performs competitively. 

Fig. 4 shows the evaluation of recall. The proposed 

TMCapsNet has the highest recall with 96.89 %, followed by 

MultiFeNet with 95.78 %, and CNN with 93.68 %. This 

shows that TMCapsNet is more effective in capturing all true 

positives, making it more sensitive in its predictions 

compared to the other models. 

 

Fig. 2.  Evaluation of accuracy. 

 

Fig. 3.  Evaluation of precision. 

 

Fig. 4.  Evaluation of recall. 

 

Fig. 5.  Evaluation of F1-score. 
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Table 3.  Overall comparative analysis. 

Parameters 

[%] 

MultiFeNet 

[16] 

CNN 

[17] 

TMCapsNet 

[proposed] 

Accuracy  96.4 90.34 98.34 

Precision  93.4 97.41  97.84 

Recall  95.7 93.67 95.34 

F1-score  96.2 95.78  94.56 

 

Fig. 5 shows the analysis of the F1_score. The existing 

MultiFeNet and the proposed TMCapsNet both achieve an 

F1-score of 96.56 %, which is higher than CNN's 94.98 %. 

Table 3 indicates overall comparative analysis between 

existing and proposed methods. 

5. CONCLUSION 

The proposed classification method for brain tumor 

detection achieves a higher level of accuracy. The new 

technology outperforms the current techniques in the 

detection and categorization of brain tumors using MRI and 

CT. It is also more is visually appealing and provides better 

results. Future work will focus on the integration of other 

images such as functional magnetic resonance imaging 

(fMRI), positron emission tomography (PET) or diffusion 

tensor imaging (DTI), which can provide complementary 

information on tumor morphology, metabolism, and 

functional connectivity. In addition, the development of 

methods to visualize and interpret model predictions, 

highlight relevant image features, and provide context-aware 

explanations could improve the transparency and reliability 

of automated tumor detection systems. 
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