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Abstract: Two orthogonal least squares methods of the points approximation by a set of parallel planes are presented. Such an approximation
can be used to study the measurement details of using a coordinate measuring machine (CMM). A calibrated gauge block and a CMM with
a touch measuring probe were used in the experimental verification. A comparison of the different CMM strategies is provided.
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1. INTRODUCTION

The use of a 3D contact coordinate measuring machine
(CMM) requires an understanding of measurement and eval-
uation principles [1]. In the following studies, the authors
focus on the influence of different software and hardware set-
tings of the measuring device and measurement strategies,
and monitor their impact on the result and measurement er-
ror.

Johnson et al. [2] describe the individual influences of
probe dynamics and other factors such as surface approach
angle and sampling strategy on the measurement error. Fig. 1
lists 5 groups of a total of 21 factors that influence the error
of the probe dynamics.

Edgeworth and Wilhelm [3] deal with the effect of probe
deflection on measurement uncertainty. The results show
that the probe deflection and the measurement uncertainty in-
crease with increasing angle between the major axis of the
probe and the surface normal. Lee and Cho [4] describe
the trigger probe kinematics and the errors resulting from the
probe deflection, the contact point error, and the anisotropic
sensitivity error.

Han and Yuan [5] deal with the effect of touch vectors of
trigger probes on the measurement uncertainty and its subse-
quent compensation. Drbul et al. [6] analyzed the influence of
strategy measurements on the generated normal vector of the
measured plane. They found that incorrect vectors influence
the observed values.

Yang et al. [7] deal with the error compensation using an
artificial neural network caused by the impact force, probe
rigidity, stylus rigidity, operating environment and their com-
binations on the probe error in measurements with a trigger
probe.

The aim of our study is to understand and verify the results

provided by the Calypso software [8] for different measure-
ment strategies and to make the obtained information avail-
able to the community of Calypso users. For this reason, a
gauge block [9] – a steel block with two parallel, opposing
faces whose distance w is known with very high accuracy (see
Fig. 4) – was used to verify and compare the results for dif-
ferent Calypso options. As far as we know, such a task has
not yet been considered.

This paper describes two methods of the approximation of
the points by a set of parallel planes. They make it possible to
study the properties of point measurement for one plane with
different “measurement directions” or for two parallel gauge
block planes.

There are several options provided by the Calypso soft-
ware [8] used in the measurement. The default is the Touch
point option, radius correction in the direction of a coordinate
system axis that corresponds to the probing direction. Here,
probing is performed in a coordinate axis direction. Other-
wise the radius correction is performed in the direction of the
coordinate axis that is closest to the probing direction (see
Fig. 2). The other often used option is the Space point option,
where a correction is made in the normal vector direction, fol-
lowed by a projection onto the normal of the nominal point.
There are other less frequently used options such as Plane
point, Net point, CAD Face point, and Mid point, which use
different correction approaches based on the normal vector
direction.

In all experiments we used the Touch point setting.

2. METHODOLOGY OF THE EXPERIMENT

The experiments were performed on a Contura G2 coordi-
nate measuring machine (Carl Zeiss, Germany) with an RDS
articulating probe holder and a VAST XXT TL1 scanning
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Calypso:
creating points on the gauge block surface
control option Touch point
setting correct vector for all points for z-direction
measurement in z direction

output: plane1.xls
setting correct vector for all points for x-direction
measurement in x direction

output: plane2.xls
Files transformation plane*.xls −→ plane*.dat
Octave:

solving the PPLSQ problem for parallel planes
input: plane1.dat, plane2.dat, rprobe
output: normal vector, shifts

Fig. 3. The flow of actions for the Experiment 1.

probe. A new M3 XXT probe with a ruby stylus tip with a ra-
dius r = 0.7508 mm and a tungsten carbide shaft with a length
of 11 mm and a 20 mm extension was used for the measure-
ment. All measurements were performed at a temperature of
20◦C.

The measured object was a steel gauge block with a nom-
inal width wnom = 50.00 mm and the systematic error δ =

0.05 µm specified in the gauge block set certificate. The
corrected nominal value is therefore wcorr = wnom + δ =
50.00005 mm.

A base coordinate system with axes parallel to the ma-
chine’s coordinate system was used for the measurement, the
zero point of which was located on a plate with a clamped
gauge block.

To maintain the repeatability and accuracy of the measure-
ment, the measurement was performed in an air-conditioned
room and the temperature change during the measurement did
not exceed 0.2◦C, thus achieving environmental stability and
minimizing the influence of temperature on the measurement.
For the base alignment, a loop was used for 5 repetitions with
a maximum delta value of 0.001 mm, which ensured the sta-
bility of the gauge block alignment as the end element. The
stability of the clamping vise was verified by multiple mea-
surements prior to the used measurements.

Experiment 1. The gauge block was fixed in a high-
precision clamping vise at an angle of α = 34.7◦ with the nor-
mal vector orthogonal to the y-axis. On the plane, 33 points
(using Touch point setting) were measured in two directions
x and z with the normal vectors (1,0,0) and (0,0,1). Touch
probe qualification was performed with standard measuring
force and 100 % probing dynamics in position A00B00 with a
standard deviation of 0.0001 mm. The measurement diagram
is shown in Fig. 1. The goal was to find out the influence of
the measuring direction of the points, whereby it is assumed
that the measurement in the x direction shows greater devia-
tions due to the lower stability of the sensor when touching.
The coordinates of the measured points were exported from
the measurement.

Fig. 2 shows the principle of correcting the measured
points depending on the direction of measurement. This cor-
rection is performed automatically for the Touch point.

Fig. 3 shows the flow of actions for the Experiment 1.
Experiment 2. The gauge block was fixed in a high-

precision clamping vise at a theoretical angle of α
.
= 45◦,

with the normal vector orthogonal to the y-axis. The mea-
surement diagram is shown in Fig. 4. For an angle α

.
= 45◦,

it is assumed that the correction of the measured points on the
surface in x, z, or −x, −z will be the same. The measurement
was performed on two planes in the directions +x (30 mea-
surement points) and −x (39 measurement points) with the
normal vector (1,0,0) and (−1,0,0). All points were mea-
sured as Touch point. For the measurement in the direction
of the +x axis, the probe holder was rotated to the A00B90
position and for −x to the A00B-90 position. Prior to the
measurements, touch probe qualification was performed with
standard measuring force and 100 % probing dynamics in de-
fined positions with standard deviations of 0.0003 mm for
A00B90 and 0.0002 mm for A00B-90.

The base coordinate system has a significant rotation com-
pared to the measured plane. The aim of the experiment was
to determine the influence of the coordinate system on the
correction of the measured values. Unless otherwise speci-
fied, a correction is made for the Touch point in the direction
of a coordinate system axis that corresponds to the probing
direction.
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Experiment 3. In Experiment 3, the coordinates of the
measured points from Experiment 2 were used. Planes (Plane
1, Plane 2) consisting of 4 points located in the corners of
the measured surface were created on the measured surfaces
(Fig. 4). The measured points were projected perpendicularly
into the created planes, resulting in a correction of the original
values. This is a frequently used correction of measured data.
The coordinates of the point projections were exported from
the measurement.

Experiment 4. The gauge block was fixed in a high-
precision clamping vise while the measured surfaces of the
gauge block were aligned perpendicular to the XY plane of
the coordinate machine. The coordinate system was created
on the gauge block. The measurement was performed on
two planes in the x and −x directions with the normal vec-
tor (1,0,0) and (−1,0,0). 12 points were measured on both
surfaces. All points were measured with the Touch points op-
tion. The touch probe holder is rotated to positions A00B90
(x) and A00B-90 (−x) and the calibration data is identical to
Experiment 2. The measurement diagram is shown in Fig. 5.

The aim of the experiment was to determine the dimen-
sions of the gauge block when the axes of the base coordinate
system are aligned in the same way as the axes of the CMM.
During the measurement, corrections are made in the direc-
tion of the coordinate system.

3. PARALLEL PLANES LEAST SQUARES FITTING

To compare the datasets coming from different directions
(z and x) of the same planar surface(s), we decided to fit the
data with parallel planes. Orthogonal fitting is also consid-

ered to provide the possibility of fitting planes in arbitrary
positions.

So let us consider the following
Parallel planes least squares (PPLSQ) problem:
For K datasets Dk, k = 1, 2, . . . , K of the form:

Dk =


x(k)1 y(k)1 z(k)1

x(k)2 y(k)2 z(k)2
...

...
...

x(k)Nk
y(k)Nk

z(k)Nk

 , k = 1, 2 . . . , K,

find K parallel planes given by the equations

nx · x+ny · y+nz · z− sk = 0, k = 1, 2 . . . , K, (1)

with unit norm ∥nnn∥2 = 1 of the normal vector nnn = [nx,ny,nz]
T

and shifts sss = [s1, . . . ,sK ]
T , where the sum of the squares of

the orthogonal distances of the points to the corresponding
plane

SSQ(nnn,sss) =
K

∑
k=1

Nk

∑
i=1

[
nx · x(k)i +ny · y(k)i +nz · z(k)i − sk

]2
(2)

is minimized. It is evident, that without the condition ∥nnn∥2 =
1, the plane equations can be multiplied to obtain an arbitrar-
ily small value of SSQ(nnn,sss). If the norm of the vector nnn is
not 1, SSQ is not the sum of the squares of the distances!

A. Orthogonal LSQ fitting using Newton method

First, we decided to solve the PPLSQ problem by minimiz-
ing the penalization function

P(nnn,sss,α) = SSQ(nnn,sss)+α ·
[
n2

x +n2
y +n2

z −1
]2

(3)

with a fixed (sufficiently large) value α > 0, using the Newton
method.

Necessary conditions for the minimum of the function
P(nnn,sss,α) with respect to the vectors nnn and sss result in (after
differentiation and division by the factor 2) the following sys-
tem of equations:

K

∑
k=1

Nk

∑
i=1

[
nx · x(k)i +ny · y(k)i +nz · z(k)i − sk

]
· x(k)i

+2αnx
[
n2

x +n2
y +n2

z −1
]
= 0, (4)

K

∑
k=1

Nk

∑
i=1

[
nx · x(k)i +ny · y(k)i +nz · z(k)i − sk

]
· y(k)i

+2αny
[
n2

x +n2
y +n2

z −1
]
= 0, (5)

K

∑
k=1

Nk

∑
i=1

[
nx · x(k)i +ny · y(k)i +nz · z(k)i − sk

]
· z(k)i

+2αnz
[
n2

x +n2
y +n2

z −1
]
= 0, (6)

−
N1

∑
i=1

[
nx · x(1)i +ny · y(1)i +nz · z(1)i − s1

]
= 0, (7)
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−
N2

∑
i=1

[
nx · x(2)i +ny · y(2)i +nz · z(2)i − s2

]
= 0, (8)

...

−
NK

∑
i=1

[
nx · x(K)

i +ny · y(K)
i +nz · z(K)

i − sK

]
= 0. (9)

Equations (4)–(9) could be rewritten in a linear form, e.g.,
(4) could be written in the form:

nx

K

∑
k=1

Nk

∑
i=1

[
x(k)i

]2
+ · · ·+nz

K

∑
k=1

Nk

∑
i=1

[
z(k)i x(k)i

]
−

K

∑
k=1

sk ·
Nk

∑
i=1

x(k)i +2αnx ·
(
∥nnn∥2

2 −1
)
= 0.

In such a form, the second derivatives of the function
P(nnn,sss,α)/2 can be calculated easily. The Jacobi matrix for
the Newton method for solving the system (4)–(9) has the fol-
lowing block form:

J(nnn,sss,α) =

[
Jnnnnnn Jnnnsss

JT
nnnsss Jssssss

]
, (10)

where Jnnnnnn = J1
nnnnnn + J2

nnnnnn with

J1
nnnnnn =



K
∑

k=1

Nk
∑

i=1

[
x(k)i

]2 K
∑

k=1

Nk
∑

i=1
y(k)i x(k)i

K
∑

k=1

Nk
∑

i=1
z(k)i x(k)i

K
∑

k=1

Nk
∑

i=1
y(k)i x(k)i

K
∑

k=1

Nk
∑

i=1

[
y(k)i

]2 K
∑

k=1

Nk
∑

i=1
z(k)i y(k)i

K
∑

k=1

Nk
∑

i=1
z(k)i x(k)i

K
∑

k=1

Nk
∑

i=1
z(k)i y(k)i

K
∑

k=1

Nk
∑

i=1

[
z(k)i

]2


,

J2
nnnnnn = 4α ·nnn ·nnnT +2α

(
∥nnn∥2

2 −1
)
· III3,

Jnnnsss =−



N1
∑

i=1
x(1)i

N2
∑

i=1
x(2)i · · ·

NK
∑

i=1
x(K)

i

N1
∑

i=1
y(1)i

N2
∑

i=1
y(2)i · · ·

NK
∑

i=1
y(K)

i

N1
∑

i=1
z(1)i

N2
∑

i=1
z(2)i · · ·

NK
∑

i=1
z(K)

i


,

and

Jssssss =


N1 0 · · · 0 0

0 N2 0 · · · 0

...
...

. . . · · · · · ·

0 0 · · · 0 NK

= diag [N1, . . . ,NK ] .

We denote the system (4)–(9) in vector form by:

ggg(nnn,sss,α) = 000, (11)

with α fixed and unknown parameters vector ppp =
[
nnnT sssT

]T ,
the Newton iteration method could be written in the form:

ppp[m+1] = ppp[m]−J−1(nnn[m],sss[m],α) ·ggg(nnn[m],sss[m],α), (12)

m = 0, 1, . . . , with an initial vector ppp[0], e.g., using the vector
nnn[0] = [1,0,0]T with norm equal to 1.

Numerical results are shown below.

B. Weighted total least-squares fitting using SVD

When we implemented the Newton method, we found an
excellent paper [10] in which a more general – weighted –
case of the PPLSQ problem was solved. Moreover, the au-
thors proposed a very elegant solution to the problem. In the
following, we give a brief description of the method proposed
in [10]. It is based on the singular value decomposition (SVD)
of a given matrix or the eigenvalue decomposition (EVD).

Following [10], we denote the vector
[
x(k)i ,x(k)i ,x(k)i

]T by

xxx(k)i . Then the Parallel planes weighted total least squares
(PPWTLSQ) problem consists of the minimization of the
function

WSSQ(nnn,sss,WWW ) =
K

∑
k=1

Nk

∑
i=1

w(k)
i

[
nnnT · xxx(k)i − sk

]2
, (13)

where all weights w(k)
i are positive.

In [10], the authors proved that for a given normal vector
nnn, the weighted centroid xxxk of each dataset Dk, defined by

xxxk =

Nk
∑

i=1
w(k)

i xxx(k)i

Nk
∑

i=1
w(k)

i

, (14)

lies on the optimal plane, and therefore

sk = nnnT · xxxk, k = 1, 2, . . . , K.

The authors also proved, that if a matrix MMM is defined by

MMM =



√
w(1)

1

(
xxx(1)1 − xxx1

)
...√

w(1)
N1

(
xxx(1)N1

− xxx1

)
√

w(2)
1

(
xxx(2)1 − xxx2

)
...√

w(2)
N2

(
xxx(2)N2

− xxx2

)
...√

w(K)
1

(
xxx(K)

1 − xxxK

)
...√

w(K)
NK

(
xxx(K)

NK
− xxxK

)



, (15)

then the optimal normal vector nnn for the problem PPWTLSQ
is the singular vector of the matrix MMM corresponding to the
minimal singular value σ3 of MMM, or the eigenvector of the
matrix MMMT ·MMM corresponding to the minimal eigenvalue.

Our problem of minimizing the function SSQ (2) is a spe-
cial case of the problem of minimizing the function WSSQ
(13) with all weights w(k)

i equal to 1, and the corresponding
centroids are simple arithmetic mean vectors

xxxk =
1

Nk

Nk

∑
i=1

xxx(k)i , k = 1, 2, . . . , K. (16)
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C. Comparison of fitting by the Newton and the SVD
method

Below are the results of solving a PPLSQ problem for real
measurement data from Experiment 1 for 33 measurements
(with 1 point excluded) in two different directions (z, x) –
K = 2, Nk = 32, k = 1, 2. All calculations were performed in
Octave [11], an open source alternative to Matlab [12].

The Newton method is implemented using subroutines:
>> newton_plane_parallel
prec=1.e-12;
alpha=1.e8;
Elapsed time is 0.00892997 seconds.
iter = 9
normal vector:
0.5692403219 -0.0052942377 0.8221541382
shifts:
59.61733238 59.80568248

The implementation of the Newton method without sub-
routines:
>> newton_parallel_planes
Elapsed time is 0.00246501 seconds.
normal vector:
0.5692403219 -0.0052942377 0.8221541382
shifts:
59.61733238 59.80568248

The implementation of the method [10] using svd:
>> svd_parallel_planes
Elapsed time is 0.000141144 seconds.
normal vector:
0.5692403219 -0.0052942377 0.8221541382
shifts:
59.61733238 59.80568248

The implementation of the method [10] using eig:
>> svd_parallel_planes
Elapsed time is 0.000156164 seconds.
normal vector:
0.5692403219 -0.0052942377 0.8221541382
shifts:
59.61733238 59.80568248

It is easy to see that the results are the same within the
chosen output precision. In fact, small differences appear for
more digits output.

The times shown here are the best times of a few runs of
each version of the program, and it do not include the input
and output parts of the programs. It is evident that both im-
plementations of the method based on the SVD or EVD are
faster than the Newton method. The use of subroutines in the
Newton method leads to an approx. double slowdown of the
calculation part. On the other hand, the implementation based
on the eigenvalue decomposition of the matrix MMMT ·MMM of size
3×3 is only 2 times faster than using the SVD of the matrix
MMM of size 96×3 (in the considered case).

One reason for using the Newton method could be that
it does not use the svd or eig procedures. However, such
functions are available in modern programming languages.

D. Excel implementation based on the SVD/EVD method

Excel or Calc do not have build-in SVD or EIG functions.
Fortunately, however, there is the Real Statistics Resource
Pack software [13]. This software package extends Excel’s
built-in statistical functions. It offers advanced worksheet
functions and data analysis tools. This allows the user to per-
form a wide variety of practical statistical analyses more eas-
ily.

We implemented the method presented in [10] to solve
the PPWTLSQ problem in Excel by using the Solver add-in
XRealStats.xlam [13].

4. NUMERICAL RESULTS

A. One plane approximation – Experiment 1

Above in subsection C, a gauge block plane was measured
in two different directions (z, x) – K = 2, Nk = 32, k = 1, 2.
Normal vector nnn .

= [0.569,−0.005,0.822]T is just perpendic-
ular to the y-direction. The slope of the plane is round 34.7◦

(degrees), and the angles between the direction vectors and
the normal vector of the plane are approx. 55.3◦ and 34.7◦

for x and z, respectively.
Denote α as the angle between the measured plane (with

the normal vector orthogonal to the y-axis) and the xy-plane
(see Fig. 6). With the default option Touch point, the Ca-
lypso program makes a correction in the direction used. So,
for the x-direction a “corrected point” X is obtained, whose
x-coordinate is shifted by the value ∆x compared to the x-
coordinate of the contact point T . At the same time, the z-
coordinate of the point X is equal to the z-coordinate of the
ball center C. In fact, the x-coordinate of the X point is shifted
by the ball radius r relative to the center point C (see Fig. 2MEASUREMENT SCIENCE REVIEW, 24, (2024), No. x, p1–p2
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Fig. 5. Correction in x-direction
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Fig. 6. Correction in z-direction

The implementation of the method [9] using eig:

>> svd_parallel_planes
Elapsed time is 0.000156164 seconds.
normal vector:
0.5692403219 -0.0052942377 0.8221541382
shifts:
59.61733238 59.80568248

One can easily see that the results are the same within the
chosen output precision. Indeed small differences appear for
more digits output.

The times shown here are the best times of few runs of
each version of the program, and it do not include the input
and output parts of the programs. It is evident that both imple-
mentations of the method based on the SVD or EVD are faster
than the Newton method. Using subroutines in the Newton
method leads to cca. double slowdown of the computational
part. On the other hand side, the implementation based on the
eigenvalue decomposition of the matrix MMMT ·MMM of size 3×3
is just 2 times faster than using SVD of the matrix MMM of size
96×3 (in the considered case).

One reason of using the Newton method may be such that
it does not use procedures svd or eig. However, such func-
tions are available in the modern programming languages.

D. Excel implementation based on the SVD/EVD method

Excel or Calc do not have build-in the SVD or EIG func-
tions. However, fortunately, there is the Real Statistics Re-
source Pack software [12]. This software package extends
Excel’s built-in statistical capabilities. It provides advanced
worksheet functions and data analysis tools. This will enable
user to more easily perform a wide variety of practical statis-
tical analyses.

We have implemented the method of solving PPWTLSQ
problem presented in [9] in Excel, using the Solver add-in
XRealStats.xlam.

4. NUMERICAL RESULTS

A. One plane approximation – Experiment 1

Above in subsection C a gauge block plane was measured in
two different directions (z, x) – K = 2, Nk = 32, k = 1, 2.
Normal vector nnn .

= [0.569,−0.005,0.822]T is just perpendic-
ular to the y-direction. The slope of the plane is about 34.7◦

(degrees), and the angles between direction vectors and the
normal vector of the plane are cca 55.3◦ and 34.7◦, for the x
and z, respectively.

Denote α the angle between the measured plane (with the
normal vector orthogonal to the y-axis) and the xy plane (see
Fig. 5). For the default option Touch Point the Calypso pro-
gram make a correction in the used direction. So, for x-
direction one get a “corrected point” X , with the x coordinate
shifted by the value ∆x with respect to the x-coordinate of the
contact point T , at the same time the z-coordinate of the point
X is equal to the z-coordinate of the ball center C. Indeed, the
x-coordinate of the X point is shifted by the ball radius r from
the center point C (see Fig. 5). From the rhombus in Fig. 5 it
is evident that the distance of the “corrected point” X to the
measured plane is equal ∆x, too. So, all measured points are
shifted by the value

∆x = r · (1− sinα) (17)

in the direction of the measured plane normal vector from the
measured plane!

Similar considerations hold for the shift ∆z of the measure-
ment done in the z-direction (see Fig. 6). The corresponding
shift

∆z = r ·
(

1− sin
(π

2
−α

))
= r · (1− cosα). (18)

5

Fig. 6. Shift ∆x from the measured plane in the normal direction of
Calypso “corrected points” in the x-direction (see Fig. 2).
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The implementation of the method [9] using eig:

>> svd_parallel_planes
Elapsed time is 0.000156164 seconds.
normal vector:
0.5692403219 -0.0052942377 0.8221541382
shifts:
59.61733238 59.80568248

One can easily see that the results are the same within the
chosen output precision. Indeed small differences appear for
more digits output.

The times shown here are the best times of few runs of
each version of the program, and it do not include the input
and output parts of the programs. It is evident that both imple-
mentations of the method based on the SVD or EVD are faster
than the Newton method. Using subroutines in the Newton
method leads to cca. double slowdown of the computational
part. On the other hand side, the implementation based on the
eigenvalue decomposition of the matrix MMMT ·MMM of size 3×3
is just 2 times faster than using SVD of the matrix MMM of size
96×3 (in the considered case).

One reason of using the Newton method may be such that
it does not use procedures svd or eig. However, such func-
tions are available in the modern programming languages.

D. Excel implementation based on the SVD/EVD method

Excel or Calc do not have build-in the SVD or EIG func-
tions. However, fortunately, there is the Real Statistics Re-
source Pack software [12]. This software package extends
Excel’s built-in statistical capabilities. It provides advanced
worksheet functions and data analysis tools. This will enable
user to more easily perform a wide variety of practical statis-
tical analyses.

We have implemented the method of solving PPWTLSQ
problem presented in [9] in Excel, using the Solver add-in
XRealStats.xlam.

4. NUMERICAL RESULTS

A. One plane approximation – Experiment 1

Above in subsection C a gauge block plane was measured in
two different directions (z, x) – K = 2, Nk = 32, k = 1, 2.
Normal vector nnn .

= [0.569,−0.005,0.822]T is just perpendic-
ular to the y-direction. The slope of the plane is about 34.7◦

(degrees), and the angles between direction vectors and the
normal vector of the plane are cca 55.3◦ and 34.7◦, for the x
and z, respectively.

Denote α the angle between the measured plane (with the
normal vector orthogonal to the y-axis) and the xy plane (see
Fig. 5). For the default option Touch Point the Calypso pro-
gram make a correction in the used direction. So, for x-
direction one get a “corrected point” X , with the x coordinate
shifted by the value ∆x with respect to the x-coordinate of the
contact point T , at the same time the z-coordinate of the point
X is equal to the z-coordinate of the ball center C. Indeed, the
x-coordinate of the X point is shifted by the ball radius r from
the center point C (see Fig. 5). From the rhombus in Fig. 5 it
is evident that the distance of the “corrected point” X to the
measured plane is equal ∆x, too. So, all measured points are
shifted by the value

∆x = r · (1− sinα) (17)

in the direction of the measured plane normal vector from the
measured plane!

Similar considerations hold for the shift ∆z of the measure-
ment done in the z-direction (see Fig. 6). The corresponding
shift

∆z = r ·
(

1− sin
(π

2
−α

))
= r · (1− cosα). (18)

5

Fig. 7. Shift ∆z from the measured plane in the normal direction of
Calypso “corrected points” in the z-direction (see Fig. 2).
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The implementation of the method [9] using eig:

>> svd_parallel_planes
Elapsed time is 0.000156164 seconds.
normal vector:
0.5692403219 -0.0052942377 0.8221541382
shifts:
59.61733238 59.80568248

One can easily see that the results are the same within the
chosen output precision. Indeed small differences appear for
more digits output.

The times shown here are the best times of few runs of
each version of the program, and it do not include the input
and output parts of the programs. It is evident that both imple-
mentations of the method based on the SVD or EVD are faster
than the Newton method. Using subroutines in the Newton
method leads to cca. double slowdown of the computational
part. On the other hand side, the implementation based on the
eigenvalue decomposition of the matrix MMMT ·MMM of size 3×3
is just 2 times faster than using SVD of the matrix MMM of size
96×3 (in the considered case).

One reason of using the Newton method may be such that
it does not use procedures svd or eig. However, such func-
tions are available in the modern programming languages.

D. Excel implementation based on the SVD/EVD method

Excel or Calc do not have build-in the SVD or EIG func-
tions. However, fortunately, there is the Real Statistics Re-
source Pack software [12]. This software package extends
Excel’s built-in statistical capabilities. It provides advanced
worksheet functions and data analysis tools. This will enable
user to more easily perform a wide variety of practical statis-
tical analyses.

We have implemented the method of solving PPWTLSQ
problem presented in [9] in Excel, using the Solver add-in
XRealStats.xlam.

4. NUMERICAL RESULTS

A. One plane approximation – Experiment 1

Above in subsection C a gauge block plane was measured in
two different directions (z, x) – K = 2, Nk = 32, k = 1, 2.
Normal vector nnn .

= [0.569,−0.005,0.822]T is just perpendic-
ular to the y-direction. The slope of the plane is about 34.7◦

(degrees), and the angles between direction vectors and the
normal vector of the plane are cca 55.3◦ and 34.7◦, for the x
and z, respectively.

Denote α the angle between the measured plane (with the
normal vector orthogonal to the y-axis) and the xy plane (see
Fig. 5). For the default option Touch Point the Calypso pro-
gram make a correction in the used direction. So, for x-
direction one get a “corrected point” X , with the x coordinate
shifted by the value ∆x with respect to the x-coordinate of the
contact point T , at the same time the z-coordinate of the point
X is equal to the z-coordinate of the ball center C. Indeed, the
x-coordinate of the X point is shifted by the ball radius r from
the center point C (see Fig. 5). From the rhombus in Fig. 5 it
is evident that the distance of the “corrected point” X to the
measured plane is equal ∆x, too. So, all measured points are
shifted by the value

∆x = r · (1− sinα) (17)

in the direction of the measured plane normal vector from the
measured plane!

Similar considerations hold for the shift ∆z of the measure-
ment done in the z-direction (see Fig. 6). The corresponding
shift

∆z = r ·
(

1− sin
(π

2
−α

))
= r · (1− cosα). (18)

5

Fig. 6. Correction in z-direction.

One can see, that the agreement for directions x and z (inex-
actness about 1.5 µm) is within the measurement precision.

Figure 7 shows, that the differences in the x-direction (with
maximum cca 2 µm) are larger than the differences in z-
direction (with maximum cca 0.3 µm). We think that it is
connected with the small angle between the x-direction and
the measured plane (decreased stability of measurement).

B. Two parallel planes approximation – Experiment 2

In this subsection we present the results of Experiment 2 done
on the experimental setup shown in Fig. 3. Unlike Experiment
1, the measurement was performed only in the +x direction
for the top surface measurement and −x for the bottom sur-
face measurement. The coordinates of the obtained points

were not adjusted or additionally corrected.
Results for parallel planes approximation:

Solution using EIG
Elapsed time is 0.000110865 seconds.
normal vector:
0.7079477908 0.003561915758 -0.7062557881
upper shift: -15.32800717
lower shift: 35.09854104
X dir distance: 50.42654821

The value ∆x for the angle α = π/4 and radius r =
0.7508 mm is equal

∆x = r ·
(
1−sin(π/4)

) .
= 0.2199 mm, 2∆x = 0.439808 mm,

and the difference ∆2 = dcalc2 −wcorr is

∆2
.
= (50.426548−50.00005) mm = 0.426498 mm.

The value

∆̄2 = ∆2 −2∆x
.
=−0.01331 mm

is out of the expected two sided measurement correction with
upper bound 0.004 mm for two measurements. For one side
is the difference from the expected value 0.006655 mm.

C. Two parallel planes approximation with projection – Ex-
periment 3

The coordinates of the points measured in Experiment 2 were
projected perpendicular to the created planes (see section 2).
The new coordinates of the points were used to calculate the
planes.

Results for point projection:

Solution using EIG
Elapsed time is 0.00701404 seconds.
normal vector:
0.7079478384 0.003559812306 -0.706255751
upper shift: -15.10840947
lower shift: 34.87991235
planes distance: 49.98832182

Maximum ’normal’ distance between
upper and lower points is 49.98854223.

The difference ∆3 = dcalc3 −wcorr is equal

∆3
.
= (49.988322−50.00005) mm =−0.011728 mm.

D. Actual value of gauge block – Experiment 4

In Experiment 4, one more measurement was done on the
gauge block with planes in vertical position (see Fig. 4).

The corrected nominal distance between two parallel
planes is wcorr = wnom + δ = 50.00005 mm. The maximum
permissible error of used Contura G2 machine is

MPEE = 1.8+
L

300
(µm), (19)

where L is the measured distance (mm). For L = 50 mm the
error upper bound is MPEE = 1.966 µm.

Experiment 4 results for two planes distance:

6

Fig. 8. The deviations of 32 measured points, i= 1, . . . , 32, realized
in z- (top) and x- (bottom) direction to the corresponding calculated
planes (in mm).

and Fig. 6). The rhombus in Fig. 6 shows that the distance of
the “corrected point” X to the measured plane is also equal to
∆x. So, all measured points are shifted by the value

∆x = r · (1− sinα) (17)

in the direction of the measured plane normal vector from the
measured plane.

Similar considerations hold for the shift ∆z of the measure-

ment performed in the z-direction (see Fig. 7). The corre-
sponding shift

∆z = r ·
(

1− sin
(

π

2
−α

))
= r · (1− cosα). (18)

All measured points are shifted by the value ∆z in the direc-
tion of the measured plane normal vector relative to the mea-
sured plane.

For the angle α = 34.7◦ and the ball radius r = 0.7508 mm,
the corresponding values are

∆x
.
= 0.323385 mm, ∆z

.
= 0.133534 mm.

The difference

∆x −∆z
.
= 0.189851 mm.

is the distance between the “shifted planes” for two measure-
ment directions and can be compared with the calculated shift
difference:

s2 − s1
.
= 59.8056825−59.6173324 .

= 0.1883501 (mm).

It can be seen, that the agreement for the directions x and z
(inaccuracy about 1.5 µm) is within the measurement preci-
sion.

Fig. 8 – below and above, respectively – shows that the
differences for the x-direction measurement (with a maxi-
mum approx. 2 µm) are larger than the differences for the
z-direction realization (with a maximum approx. 0.3 µm).
We believe that this is due to the small angle between the x-
direction and the measured plane (lower stability of the mea-
surement).

B. Two parallel planes approximation – Experiment 2

In this subsection, we present the results of Experiment 2,
which was conducted with the experimental setup shown in
Fig. 4. In contrast to Experiment 1, the measurement was
performed only in the +x direction for the top surface mea-
surement and −x for the bottom surface measurement. The
coordinates of the obtained points were not adjusted or addi-
tionally corrected.

Results for the parallel planes approximation:

Solution using EIG
Elapsed time is 0.000110865 seconds.
normal vector:
0.7079477908 0.003561915758 -0.7062557881
upper shift: -15.32800717
lower shift: 35.09854104
X dir distance: 50.42654821

The value ∆x for the angle α = π/4 and the radius r =
0.7508 mm is equal to

∆x = r ·
(
1−sin(π/4)

) .
= 0.2199 mm, 2∆x = 0.439808 mm,

and the difference ∆2 = dcalc2 −wcorr is

∆2
.
= (50.426548−50.00005) mm = 0.426498 mm.
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The value

∆̄2 = ∆2 −2∆x
.
=−0.01331 mm

is out of the expected two sided measurement correction with
an upper bound of 0.004 mm for two measurements. For one
side, the difference to the expected value is 0.006655 mm.

C. Two parallel planes approximation with projection – Ex-
periment 3

The coordinates of the points measured in Experiment 2
were projected perpendicular to the planes created (see sec-
tion 2). The new coordinates of the points were used to cal-
culate the planes.

Results for the point projection:

Solution using EIG
Elapsed time is 0.00701404 seconds.
normal vector:
0.7079478384 0.003559812306 -0.706255751
upper shift: -15.10840947
lower shift: 34.87991235
planes distance: 49.98832182

Maximum ’normal’ distance between
upper and lower points is 49.98854223.

The difference ∆3 = dcalc3 −wcorr is equal to

∆3
.
= (49.988322−50.00005) mm =−0.011728 mm.

D. Actual value of the gauge block – Experiment 4

In Experiment 4, a further measurement was performed
on the gauge block with vertical planes (see Fig. 5).

The corrected nominal distance between two parallel
planes is wcorr = wnom + δ = 50.00005 mm. The maximum
permissible error of the Contura G2 machine used is [14]

MPEE = 1.8+
L

300
(µm), (19)

where L is the measured distance (mm). For L = 50 mm, the
upper error bound is MPEE = 1.966 µm.

Experiment 4 results for two planes distance:

N = 12
Solution using EIG
Elapsed time is 0.00648904 seconds.
normal vector:
-0.99999985 -0.00052519390 -0.00013946011
right shift: -0.001794589178
left shift: 49.99707257
X dir distance: 49.99886716

Maximum ’normal’ distance between
right and left points is 49.99919924.

The difference

∆4
.
= (49.998867−50.00005) mm =−0.001183 mm.

The result of the distance measurement is within the CMM
precision 50.00005±0.002 mm (wcorr ±MPEE ). The differ-
ence between the calculated plane distance and wcorr for Ex-
periment 4 is approx. −1.183 µm, an absolute value of that is
below the declared CMM precision.

5. DISCUSSION AND CONCLUSIONS

The results of Experiment 1 presented in subsection A us-
ing the Touch point option show that the “corrected” mea-
surement points lie in a parallel plane hose distances to the
measured plane ∆x and ∆z are defined by (17) and (18), re-
spectively. However, our measurements are not able to re-
veal a systematic error of the measurement, our comparison
is based on the shifts differences. The z-direction is a more
stable option than the x-direction.

The results of Experiment 2 presented in subsection B us-
ing the Touch point option show that there is some system-
atic error in the two-sided measurement of planes that are not
parallel to the yz-plane of the coordinate system. The differ-
ence between ∆2 = 0.426498 mm and the calculated correc-
tion 2∆x = 0.439808 mm is ∆̄2 =−0.01321 mm.

The result of Experiment 3, which is presented in subsec-
tion C, shows that the systematic error ∆3

.
= −0.011728 mm

occurs for the two-sided measurement of planes not parallel
to the yz-plane of the coordinate system using the projection
onto the measured planes.

The results of Experiments 2 and 3 show that the Calypso
software results for the Touch point option without subse-
quent projection correspond to the shifted planes and testify
that a systematic error occurs when measuring planes that are
not parallel to the yz-plane of the coordinate system. The
source of such an error should be studied in future experi-
ments.

The result of Experiment 4 presented in subsection D
shows that for the two-sided measurement of vertical planes
(parallel to the yz-plane of the coordinate system) using the
Touch point option, the difference ∆4

.
= −0.001183 mm is

within the declared CMM precision.
The measurement was performed in a controlled environ-

ment, a probe qualification was performed before the mea-
surements and the stability of the preparation was verified
(balancing in the loop and repeated measurements). In this
way, we tried to exclude their influence on the measurement
results.

For point measurements it is possible to use the Space point
option to use the found normal vector of the measured plane.

The least squares approximation methods for common par-
allel planes for multiple data sets can be used not only for
gauge blocks processing, but also in industry where parallel
planes of products are assumed.
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