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Abstract. The results of examining error evaluation of the coverage factor with approximate 
methods in indirect measurements have been presented in the paper. The characteristics of 
the convolution are compared to the known characteristics of the coverage factor for the 
convolution of two component distributions and  of the coverage factor for the  normal 
distribution. Comparison of the results obtained with the known evaluation of these errors in 
direct measurements enabled to determine the change tendency of the errors of coverage 
factor evaluation, when the number of components of standard uncertainties grows. 
The knowledge of coverage factor characteristics for the convolution of four selected 
probability distributions was used for the research. 
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1. Introduction 

Each evaluation of the expanded uncertainty requires the choice of an approximate evaluation 
method of the coverage factor. In the methods suggested by the international document [1] it 
is necessary to decide whether the evaluated factor shall approach the factor for a normal 
distribution or for Student's distribution. Usually the sample size is the decisive factor in the 
choice. However, how the number of standard component uncertainties influences the choice 
of the evaluation method is unknown. The basis for estimating the accuracy of applied 
approximate method of the estimation of expanded uncertainty is the assumption on the 
necessity of determining the method, which could be regarded as the exact one. 

An essentially appropriate concept was adopted, which is taken into consideration, that the 
method based on the command of the convolution of probability distributions of errors of 
components may be regarded as an exact method. Due to complexity and time-consuming 
character of computing the convolution of many distributions of components, the results of 
such computing are, in general, hardly ever published. Therefore, approximate methods are 
generally accepted and recommended.  

There are the results of publications [2], [3], [5], [6] concerning the analysis of accuracy of 
approximate methods of expanded uncertainty estimation for simple direct measurement, 
when there are only two component standard uncertainties. 

Indirect measurements are characterised usually by a larger number of standard components 
uncertainties. 

In the present paper the analysis of accuracy of estimating the coverage factor in indirect 
measurements was described. The examination results for the convolution of two Student 
distributions and two rectangular distributions were described.  
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2. Characteristics of the convolution of two Student’s distributions and two rectangular 
distrbutions 

A measuring event, which utilizes a convolution of two Student distributions and two 
rectangular distributions is an example of indirect measurement carried out by means of two 
measuring devices, which in case of repeated measurements, show a scatter of results, and the 
number of measurements is small (n<30).  

Therefore, four standard uncertainties are analyzed: two type-A standard uncertainties, which 
reflect a standard deviation of Student distribution and two type-B standard uncertainties, 
which reflect a standard deviation of rectangular distributions. 

On the basis of the developed analytical description of coverage factors in case of the 
analyzed convolutions one is able to identify all parameters, which function are the factors. 
One is able to demonstrate that a coverage factor for the convolution S*S*R*R, from now on 
referred to as factor kSSRR(α) is a function of 6 variables [4]: probability α, number of degrees 
of freedom m1 = n1-1 and m2 = n2-1 first and second Student’s distributions and the ratio of 
standard uncertainties ηS, ηR and η (1): 
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3. Computational results of the coverage factor for the convolution 

Calculations were executed for one probability value α = 0.99, for small values m, and for the 
value η, ranging from 0.1 to 10.  

Matlab program was used for the calculations and the following were assumed: 

- approximation accuracy of the probability range α over the variable k, ε=1e-4, 

- the number of integration ranges in the Simpson’s method of integration 300, 

- multiple j=20. 

Computational results are presented in table 1. 
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Table 1. Values of the coverage factor kSSRR(α) 
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Characteristics of the coverage factor are presented in the function of the ratio of standard 
uncertainties η and its converse. Characteristics of the coverage factor kSSRR(0.99) are 
compared to the characteristic of the coverage factor kSR(0.99) for the convolution S*R and 
the characteristic of the coverage factor kN(0.99) for a normal distribution. 

Fig. 1 shows the characteristics of the coverage factor kSSRR(0.99) for m1=m2=3, m1=m2=9, 
ηS=ηR=1 in the function of the ratio of standard uncertainties η=uA/uB and its converse. 

Fig. 1. Characteristics of the coverage factor kSSRR(0.99) for m1=m2=3, m1=m2=9, kSR(0.99) and kN(0.99) in the 
function of the ratio of standard uncertainties η and its converse. 
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In this situation both samples have the same number of degrees of freedom and none of the 
component standard uncertainties of type A and of type B is a domineering one. Broken line 
shows characteristics of the coverage factor kSR(0.99) for the convolution S*R, for m = 3 and 
m = 9, and the coverage factor kN(0.99) for a normal distribution. 

In accordance with the central limit theorem, the characteristics of the coverage factor 
kSSRR(α) and kSR(α) clearly trend to approach the value of the factor kN(α) as the sample size 
increases. The phenomenon is observed in the domain where uA>uB, further called domain A. 
Whereas in the domain where uB>uA further called domain B, the influence of the sample size 
is much smaller and fades as the value of the ratio uB>uA increases. 

4. The method of geometrical sum 

A method called the method of geometrical sum is utilized quite often in practical 
measurements. According to this method the expanded uncertainty is estimated as 
a geometrical sum of the component expanded uncertainties: 
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For indirect measurement the expanded uncertainty is calculated according to the relation 
presented below, taking into account that in the analyzed case of the convolution of four 
component distributions S*S*R*R, the expanded uncertainty will be equal to: 
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Assuming that all partial derivatives in the expression uC are equal to one, the coverage factor 
estimated by means of a method of geometrical sum from now on referred to as kgSSRR(α), will 
assume the form: 
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After appropriate substitutions, factor kgSSRR(α) expressed as a function of standard 
uncertainties ratios η and ηS and specific of coverage factors, will be produced: 
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Fig. 2 presents characteristics of coverage factor kgSSRR(0.99) and kSSRR(0.99) in the function of 
the ratio of standard uncertainties η and its converse. 

Fig. 2. Characteristics of the coverage factor kgSSRR(0.99), kSSRR(0.99) and kR(0.99) in the function of the ratio 
of standard uncertainties η and its converse. 

A characteristic feature of the computed factor kgSSRR(0.99) is that in domain A its values will 
not differ significantly from the values of factor kSSRR(0.99), which are exact values. With the 
increasing number of degrees of freedom m, the differences diminish. In domain B the values 
of the analyzed factor only to a lesser extent depend on the number of degrees of freedom and 
the values of factors kgSSRR(0.99) are getting close to the values of factor kR(0.99) for 
a rectangular distribution. 

According to the assumption that the value of coverage factor for the analyzed convolution of 
component distributions may be regarded as an exact value, the absolute value of error 
estimation by means of this approximate method is defined as: 
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Fig. 3 presents the absolute error values δ of factor estimations kgSSRR(0.99) against errors δ’  
of the factor estimation kgSR(0.99) in the function of the ratio of standard uncertainties η and 
its converse for various values of m, where: 
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Fig. 3. Absolute error values δ of factor estimations kgSSRR(0.99) and error values δ’ of the factor estimation 
kgSR(0.99) in the function of the ratio of standard uncertainties η and its converse  

5. Conclusion 

According to Fig. 3  there is a limitation of utilization of the method of geometrical sum 
especially in the domain where the ratio uB/uA increases. In spite of a relatively big increase 
of errors in case of indirect measurements in comparison with errors in direct measurements, 
they exceed the assumed value 20% in a small range of changes of standard uncertainties ratio 
for the number of degrees of freedom m = 9. 

The present results of research, which concern the trend of changes of errors of coverage 
factor estimations are connected with characteristics features of coverage factors kgSSRR(0.99) 
estimated by means of the method of geometrical sum and the characteristics of the coverage 
factor kSSRR(0.99)  for the analysed convolution. 
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